Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(1*RS*,4*SR*)-3-Dichloromethylene-1,4dimethyl-2-oxabicyclo[2.2.2]oct-5-ene

Andrew J. Tyrrell,* George C. Feast and Jeremy Robertson

Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, England Correspondence e-mail: andrew.tyrrell@chem.ox.ac.uk

Received 28 May 2008; accepted 8 June 2008

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.002 Å; R factor = 0.035; wR factor = 0.093; data-to-parameter ratio = 19.7.

X-ray crystallography was used to confirm the structure of the enantio-enriched title compound, $C_{10}H_{12}Cl_2O$, a bicylic enol ether. A bridged boat-like structure is adopted and the dichloromethylene C atom is positioned significantly removed from the core bicyclic unit. In the crystal structure, molecules pack to form sheets approximately perpendicular to the *a* and *c* axes.

Related literature

For related literature, see: Yamabe *et al.* (1996); Machiguchi *et al.* (1999); Khanjin *et al.* (1999); Ussing *et al.* (2006); Robertson & Fowler (2006).

Experimental

Crystal data $C_{10}H_{12}Cl_2O$ $M_r = 219.11$

Monoclinic, $P2_1/c$ a = 9.3365 (1) Å b = 9.6327 (2) Å c = 11.4259 (2) Å $\beta = 92.7347 (11)^{\circ}$ $V = 1026.43 (3) \text{ Å}^{3}$ Z = 4

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) $T_{min} = 0.83, T_{max} = 0.90$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.093$ S = 1.012321 reflections 118 parameters Mo $K\alpha$ radiation $\mu = 0.59 \text{ mm}^{-1}$ T = 150 K $0.44 \times 0.32 \times 0.18 \text{ mm}$

4320 measured reflections 2321 independent reflections 2094 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$

2 restraints H-atom parameters constrained $\Delta \rho_{max} = 0.36 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.38 \text{ e } \text{ Å}^{-3}$

Data collection: *COLLECT* (Nonius, 2001); cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: Görbitz (1999) and *DENZO/SCALEPACK*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS*.

The authors thank the Oxford Chemical Crystallography Service for use of instrumentation and Dr Amber L. Thompson for her advice.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2637).

References

- Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Görbitz, C. H. (1999). Acta Cryst. B55, 1090-1098.
- Khanjin, N. A., Snyder, J. P. & Menger, F. M. (1999). J. Am. Chem. Soc. 121, 11831–11846.
- Machiguchi, T., Hasegawa, T., Ishiwata, A., Terashima, S., Yamabe, S. & Minato, T. (1999). J. Am. Chem. Soc. 121, 4771–4786.
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Robertson, J. & Fowler, T. (2006). Org. Biomol. Chem. 4, 4307-4318.
- Ussing, B. R., Hang, C. & Singleton, D. A. (2006). J. Am. Chem. Soc. 128, 7594–7607.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK.
- Yamabe, S., Dai, T., Minato, T., Machiguchi, T. & Hasegawa, T. (1996). J. Am. Chem. Soc. 118, 6518–6519.

supplementary materials

Acta Cryst. (2008). E64, o1261 [doi:10.1107/S1600536808017248]

(1RS,4SR)-3-Dichloromethylene-1,4-dimethyl-2-oxabicyclo[2.2.2]oct-5-ene

A. J. Tyrrell, G. C. Feast and J. Robertson

Comment

The reaction between dienes and ketenes to produce cyclobutanones was long considered to be a textbook example of a [2 + 2] cycloaddition that could be understood in terms of a $\pi 2_s + \pi 2_a$ Woodward–Hoffmann formalism. More recently, evidence has been presented for a stepwise hetero-Diels–Alder/Claisen rearrangement pathway (Yamabe *et al.*, 1996) and it was reported that the periselectivity of these cycloadditions is responsive to the nature of the diene (Machiguchi *et al.*, 1999). The situation is, however, more complex and a combined theoretical and experimental study of the reaction of cyclopentadiene with either dichloro- or diphenylketene revealed that both [4 + 2] and [2 + 2] adducts may be produced directly through parallel reaction pathways traversing a bifurcating energy surface (Ussing *et al.* 2006). Our studies sought to address certain mechanistic aspects of the Claisen rearrangement of bicyclic enol ethers structurally analogous to those produced in diene/ketene [4 + 2] cycloadditions (Robertson & Fowler, 2006); within this study, although crystals were obtained as a racemate, the title compound was prepared in an enantioenriched form in order to determine if access to non-racemic cyclobutanones could be achieved.

The relationship between computed distances of reacting termini and activation energies has been discussed for structurally similar Claisen precursors in the context of the mechanism of chorismate mutase (Khanjin *et al.*, 1999). The molecular stucture (Fig. 1) shows the dichloromethylene carbon to be significantly removed from the carbon at C5 (3.5523 Å) and yet the title compound can be induced to undergo the Claisen rearrangement under mild thermal conditions to yield (1*RS*, 6*SR*)-8,8-dichloro-3,6-dimethylbicyclo[4.2.0]oct-3-en-7-one. Also of note are the sheets of molecules which form approximatedly perpendicular to the *a*- and *c*-axes as shown in Fig. 2 and Fig. 3.

Experimental

The title compound was crystallized by concentration of a sample dissolved in petroleum ether. $[\alpha]_D^{25}$ -36.1 (CHCl₃, c = 1.0).

Refinement

Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (*DENZO/SCALEPACK*, Otwinowski & Minor, 1997).

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98) and U_{iso} (H) (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Fig. 2. The title compound viewed along the *a*-axis with H atoms omitted.

Fig. 3. The title compound viewed along the *b*-axis with H atoms omitted.

(1RS,4SR)-3-Dichloromethylene-1,4-dimethyl-2- oxabicyclo[2.2.2]oct-5-ene

Crystal data	
$C_{10}H_{12}Cl_2O_1$	$F_{000} = 456$
$M_r = 219.11$	$D_{\rm x} = 1.418 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 15784 reflections
a = 9.3365 (1) Å	$\theta = 5-27^{\circ}$
b = 9.6327 (2) Å	$\mu = 0.59 \text{ mm}^{-1}$
c = 11.4259 (2) Å	T = 150 K
$\beta = 92.7347 \ (11)^{\circ}$	Prism, colourless
$V = 1026.43 (3) \text{ Å}^3$	$0.44 \times 0.32 \times 0.18 \text{ mm}$
Z = 4	

Data collection

Nonius KappaCCD diffractometer	2094 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.021$
T = 150 K	$\theta_{\text{max}} = 27.4^{\circ}$
ω scans	$\theta_{\min} = 5.1^{\circ}$
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997)	$h = -12 \rightarrow 12$
$T_{\min} = 0.83, T_{\max} = 0.90$	$k = -12 \rightarrow 12$
4320 measured reflections	$l = -14 \rightarrow 14$
2321 independent reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.034$	H-atom parameters constrained
$wR(F^2) = 0.093$	Method = Modified Sheldrick $w = 1/[\sigma^2(F^2) + (0.05P)^2 + 0.71P],$ where $P = [\max(F_0^2, 0) + 2F_c^2]/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} = 0.001$
2321 reflections	$\Delta \rho_{\text{max}} = 0.36 \text{ e } \text{\AA}^{-3}$
118 parameters	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$
2 restraints	Extinction correction: None

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.02322 (16)	0.72676 (17)	0.56170 (14)	0.0234
O2	0.12271 (11)	0.62312 (12)	0.61475 (10)	0.0217
C3	0.26458 (15)	0.64956 (16)	0.59821 (13)	0.0192
C4	0.28716 (17)	0.77747 (17)	0.52291 (14)	0.0230
C5	0.21390 (19)	0.89526 (18)	0.58719 (15)	0.0293
C6	0.07027 (19)	0.86685 (17)	0.60962 (15)	0.0274
C7	0.04601 (18)	0.72396 (18)	0.43089 (14)	0.0280
C8	0.19575 (18)	0.75082 (18)	0.40893 (14)	0.0267
C9	-0.12456 (17)	0.6806 (2)	0.59357 (17)	0.0326
C10	0.44060 (19)	0.8143 (2)	0.49372 (17)	0.0339
C11	0.35800 (16)	0.56064 (17)	0.64983 (14)	0.0215
Cl12	0.29697 (4)	0.42007 (4)	0.72783 (4)	0.0295
Cl13	0.54194 (4)	0.56859 (5)	0.64989 (4)	0.0320
H51	0.2631	0.9775	0.6123	0.0403*
H61	0.0073	0.9265	0.6509	0.0362*

supplementary materials

H71	-0.0214	0.7925	0.3907	0.0397*
H72	0.0158	0.6344	0.3998	0.0386*
H81	0.1990	0.8293	0.3587	0.0379*
H82	0.2347	0.6712	0.3675	0.0381*
H91	-0.1917	0.7492	0.5652	0.0477*
H92	-0.1261	0.6724	0.6804	0.0498*
H93	-0.1529	0.5941	0.5590	0.0483*
H101	0.4319	0.8976	0.4440	0.0529*
H102	0.5032	0.8374	0.5608	0.0543*
H103	0.4864	0.7409	0.4472	0.0531*

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0213 (7)	0.0229 (7)	0.0254 (8)	0.0045 (6)	-0.0044 (6)	-0.0009 (6)
O2	0.0175 (5)	0.0225 (6)	0.0251 (5)	0.0016 (4)	0.0005 (4)	0.0041 (4)
C3	0.0188 (7)	0.0205 (7)	0.0183 (7)	-0.0023 (5)	0.0005 (5)	-0.0019 (6)
C4	0.0257 (7)	0.0220 (7)	0.0209 (7)	-0.0043 (6)	-0.0022 (5)	0.0018 (6)
C5	0.0373 (8)	0.0221 (8)	0.0275 (8)	0.0009 (7)	-0.0073 (7)	-0.0031 (7)
C6	0.0339 (8)	0.0229 (8)	0.0251 (8)	0.0055 (7)	-0.0030 (6)	-0.0032 (6)
C7	0.0347 (8)	0.0264 (8)	0.0223 (8)	0.0014 (7)	-0.0067 (6)	-0.0013 (6)
C8	0.0352 (8)	0.0268 (8)	0.0178 (7)	-0.0025 (7)	-0.0026 (6)	0.0010 (6)
C9	0.0212 (8)	0.0328 (9)	0.0435 (10)	0.0028 (7)	-0.0005 (7)	-0.0031 (8)
C10	0.0309 (9)	0.0345 (10)	0.0360 (9)	-0.0126 (7)	-0.0013 (7)	0.0072 (8)
C11	0.0189 (7)	0.0234 (7)	0.0222 (7)	-0.0011 (6)	0.0001 (5)	0.0004 (6)
Cl12	0.0292 (2)	0.0261 (2)	0.0329 (2)	-0.00012 (15)	-0.00257 (16)	0.01006 (16)
Cl13	0.0183 (2)	0.0372 (3)	0.0401 (3)	0.00107 (15)	-0.00273 (16)	0.00256 (18)

Geometric parameters (Å, °)

1.4741 (18)	C7—C8	1.455 (2)
1.514 (2)	С7—Н71	1.008
1.520 (2)	С7—Н72	0.970
1.511 (2)	C8—H81	0.950
1.3707 (17)	С8—Н82	0.980
1.523 (2)	С9—Н91	0.957
1.339 (2)	С9—Н92	0.996
1.531 (2)	С9—Н93	0.954
1.544 (2)	C10—H101	0.985
1.528 (2)	С10—Н102	0.968
1.404 (3)	С10—Н103	0.993
0.953	C11—C112	1.7324 (16)
0.962	C11—C113	1.7190 (15)
106.78 (12)	С1—С7—Н72	108.9
106.10 (12)	С8—С7—Н72	111.1
108.65 (14)	H71—C7—H72	104.6
105.44 (13)	C4—C8—C7	112.39 (13)
115.34 (14)	С4—С8—Н81	110.2
	1.4741 (18) 1.514 (2) 1.520 (2) 1.511 (2) 1.3707 (17) 1.523 (2) 1.339 (2) 1.531 (2) 1.544 (2) 1.528 (2) 1.404 (3) 0.953 0.962 106.78 (12) 106.10 (12) 108.65 (14) 105.44 (13) 115.34 (14)	1.4741 (18) $C7-C8$ $1.514 (2)$ $C7-H71$ $1.520 (2)$ $C7-H72$ $1.511 (2)$ $C8-H81$ $1.3707 (17)$ $C8-H82$ $1.523 (2)$ $C9-H91$ $1.339 (2)$ $C9-H92$ $1.531 (2)$ $C9-H93$ $1.544 (2)$ $C10-H101$ $1.528 (2)$ $C10-H102$ $1.404 (3)$ $C10-H103$ 0.953 $C11-C112$ 0.962 $C11-C113$ $106.78 (12)$ $C8-C7-H72$ $106.10 (12)$ $C8-C7-H72$ $108.65 (14)$ $H71-C7-H72$ $105.44 (13)$ $C4-C8-H81$

113.84 (14)	С7—С8—Н81	107.7
114.30 (12)	C4—C8—H82	109.5
112.89 (12)	С7—С8—Н82	109.0
115.71 (13)	H81—C8—H82	107.9
131.40 (14)	С1—С9—Н91	107.8
104.57 (13)	С1—С9—Н92	108.7
104.84 (12)	Н91—С9—Н92	110.5
106.63 (13)	С1—С9—Н93	113.3
117.88 (14)	Н91—С9—Н93	107.4
112.19 (14)	Н92—С9—Н93	109.1
109.92 (13)	C4-C10-H101	105.3
113.31 (14)	C4—C10—H102	114.7
122.7	H101—C10—H102	107.4
123.9	C4—C10—H103	112.5
111.77 (14)	H101—C10—H103	107.3
122.4	H102—C10—H103	109.2
125.8	C3—C11—Cl12	120.21 (12)
110.31 (13)	C3—C11—Cl13	126.97 (12)
108.8	Cl12—C11—Cl13	112.82 (9)
112.9		
	113.84 (14) 114.30 (12) 112.89 (12) 115.71 (13) 131.40 (14) 104.57 (13) 104.84 (12) 106.63 (13) 117.88 (14) 112.19 (14) 109.92 (13) 113.31 (14) 122.7 123.9 111.77 (14) 122.4 125.8 110.31 (13) 108.8 112.9	113.84(14) $C7-C8-H81$ $114.30(12)$ $C4-C8-H82$ $112.89(12)$ $C7-C8-H82$ $115.71(13)$ $H81-C8-H82$ $131.40(14)$ $C1-C9-H91$ $104.57(13)$ $C1-C9-H92$ $104.84(12)$ $H91-C9-H92$ $106.63(13)$ $C1-C9-H93$ $117.88(14)$ $H91-C9-H93$ $112.19(14)$ $H92-C9-H93$ $109.92(13)$ $C4-C10-H101$ $113.31(14)$ $C4-C10-H102$ 122.7 $H101-C10-H102$ 123.9 $C4-C10-H103$ $111.77(14)$ $H101-C10-H103$ 125.8 $C3-C11-C112$ $110.31(13)$ $C3-C11-C113$ 108.8 $C112-C11-C113$ 112.9 $C12-C11-C113$

Fig. 2

Fig. 3

